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Abstract
We construct one-parameter deformation of the Dorfman Hamiltonian operator
for the Riemann hierarchy using the quasi-Miura transformation from
topological field theory. In this way, one can get the rational approximate
symmetries of the KdV equation and then investigate its bi-Hamiltonian
structure.

PACS numbers: 02.30.Ik, 02.30.Mv, 11.10.Ef

1. Introduction

In this paper, we will investigate the one-parameter deformation of the Dorfman Hamiltonian
operator (D = ∂x)

J = D
1

vx

D
1

vx

D (1)

which is of third order and compatible with the differential operator D, i.e., J + λD is a
Hamiltonian operator for any λ [3]. The deformation of the bi-Hamiltonian pair J and D
satisfies the Jacobi identity only up to a certain order of the parameter of the deformation.
The problem is how we can find the deformation such that the bi-Hamiltonian structure can
be preserved. One way to construct this deformation is borrowed from the free energy of
the topological field theory (TFT) [5] (and references therein). The free energy satisfies the
universal loop equation (p 157 in [5]). From the free energy, one can construct the so-called
quasi-Miura transformation to get the deformation (see below).

From the deformation of the bi-Hamiltonian pair, one can also get the deformation of the
recursion operator JD−1 to the genus-one correction (ε2-correction). The deformed recursion
operator can be used to generate higher-order symmetries, which commute with each other
only up to O(ε4). In doing so, we can deform the original integrable system to include
ε2-correction . The rational approximate symmetries of the KdV equation are established
using the method.
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Let us start with the well-known Riemann equation

vt = vvx. (2)

It is also called the dispersionless KdV (dKdV) equation. The integrability of (2) is that it has
an infinite sequence of commuting Hamiltonian flows (t1 = t)

vtn = vnvx n = 1, 2, 3, . . . . (3)

The Riemann hierarchy (3) has the bi-Hamiltonian structure [11]

vtn = 1

(n + 1)(n + 2)
DδHn+2 = 1

(n + 1)(n + 2)(n + 3)(n + 4)
J δHn+4 (4)

where Hn = ∫
vn dx, δ is the variational derivative and J is the Dorfman Hamiltonian operator

(1). From the bi-Hamiltonian structure (4), the recursion operator is defined as

L = JD−1 = D
1

vx

D
1

vx

= R2 (5)

where

R = D
1

vx

(6)

is the Olver–Nutku recursion operator [11], i.e., the square root of the recursion operator L.
One can easily check that R (or L) satisfies the following recursion operator equation associated
with the Riemann equation (2)

At = [vx + vD,A] (7)

where A is a (pseudo-)differential operator. Then from the recursion operator theory [10], one
can establish new symmetries of (2) by the Olver–Nutku recursion operator (6) repeatedly

vτn
= Rn1 n = 1, 2, 3, . . . . (8)

The new symmetries (8) of (2), i.e.,

(vt )τn
= (

vτn

)
t

will correspond to the ‘superintegrability’ of the Riemann equation (2) [14].
Next, to deform the recursion operator (6), we use the free energy in TFT of the famous

KdV equation

ut = uux +
ε2

12
uxxx (9)

to construct the quasi-Miura transformation as follows. The free energy F of KdV equation (9)
in TFT has the form

(
F0 = 1

6v3
)

F = 1

6
v3 +

∞∑
g=1

ε2g−2Fg(v; vx, vxx, vxxx, . . . , v
(3g−2)).

Let

�F =
∞∑

g=1

ε2g−2Fg(v; vx, vxx, vxxx, . . . , v
(3g−2))

= F1(v; vx) + ε2F2(v; vx, vxx, vxxx, vxxxx)

+ ε4F3(v; vx, vxx, vxxx, vxxxx, . . . , v
(7)) + · · · .
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The �F will satisfy the loop equation (p 151 in [5])

∑
r�0

∂�F

∂v(r)
∂r
x

1

v − λ
+

∑
r�1

∂�F

∂v(r)

r∑
k=1

(
r

k

)
∂k−1
x

1√
v − λ

∂r−k+1
x

1√
v − λ

= 1

16λ2
− 1

16(v − λ)2
− κ0

λ2
+

ε2

2

∑
k,l�0

[
∂2�F

∂v(k)∂v(l)
+

∂�F

∂v(k)

∂�F

∂v(l)

]

× ∂k+1
x

1√
v − λ

∂l+1
x

1√
v − λ

− ε2

16

∑
k�0

∂�F

∂v(k)
∂k+2
x

1

(v − λ)2
. (10)

Then we can determine F1, F2, F3, . . . recursively by substituting �F into equation (10). For
F1, one obtains

1

v − λ

∂F1

∂v
− 3

2

vx

(v − λ)2

∂F1

∂vx

= 1

16λ2
− 1

16(v − λ)2
− κ0

λ2
.

From this, we have

κ0 = 1
16 F1 = 1

24 log vx.

The next term F2(v; vx, vxx, vxxx, vxxxx) is presented in the appendix. Now, one can define
the quasi-Miura transformation as

u = v + ε2(�F)xx = v + ε2(F1)xx + ε4(F2)xx + · · ·
= v +

ε2

24
(log vx)xx + ε4

(
vxxxx

1152v2
x

− 7vxxvxxx

1920v3
x

+
v3

xx

360v4
x

)
xx

+ · · · . (11)

One remarks that a Miura-type transformation means the coefficients of ε are homogeneous
polynomials in the derivatives vx, vxx, . . . , v

(m) (p 37 in [5], [7]) and ‘quasi’ means those
of ε are quasi-homogeneous rational fuctions in the derivatives also (p 109 in [5] and see
also [13]).

The truncated quasi-Miura transformation

u = v +
g∑

n=1

ε2n[Fn(v; vx, vxx, . . . , v
(3g−2))]xx (12)

has the basic property (p 117 in [5]) that it reduces the Magri Poisson pencil of the KdV
equation (9) [8]

{u(x), u(y)}λ = [u(x) − λ]Dδ(x − y) + 1
2ux(x)δ(x − y) +

ε2

8
D3δ(x − y) (13)

to the Poisson pencil of the Riemann hierarchy (3):

{v(x), v(y)}λ = [v(x) − λ]Dδ(x − y) + 1
2vx(x)δ(x − y) + O(ε2g+2). (14)

One can also say that the truncated quasi-Miura transformation (12) deforms the KdV
equation (9) to the Riemann equation (2) up to O(ε2g+2). And conversely, we can also
think that the Poisson pencil (14) for the Riemann hierarchy is deformed to get the Magri
Poisson pencil (13) of genus-g correction after the truncated quasi-Miura transformation (12).
So a very natural question arises: under the truncated quasi-Miura transformation (12), is the
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deformed Dorfman Hamiltonian operator J (ε) of (1) still Hamiltonian and compatible with
D up to O(ε2g+2)? The answer is affirmative for g = 1, i.e.,

u = v +
ε2

24
(log vx)xx + O(ε4) (15)

or

v = u − ε2

24
(log ux)xx + O(ε4) (16)

and it is the main purpose of this paper.
Also, from the deformed recursion operator R(ε) of the Olver–Nutku recursion operator

(6), we can generate rational approximate symmetries of the KdV equation (9) up to O(ε4).
These symmetries are different from those generated by the Magri Poisson pencil (13). Then
one can call them the ‘superintegrability’ of the KdV equation.

Finally, one remarks that in general integrable dispersive deformation for integrable
dispersionless systems is not unique [1, 6, 9, 13]. For deformations of bi-Hamiltonian PDEs
of hydrodynamic type with one dependent variable, we refer to [7].

The paper is organized as follows. In the next section, we construct the genus-one
deformation of Olver–Nutku recursion operator. In section 3, the bi-Hamiltonian structure of
the rational approximate symmetries of KdV equation (9) is investigated. In the final section,
we discuss some problems to be investigated.

2. Quasi-Miura transformation of the Olver–Nutku recursion operator

In this section, we will investigate the Hamiltonian operator D and the Olver–Nutku recursion
operator (6) under the truncated quasi-Miura transformation (12) for g = 1.

In the new ‘u-coordinate’, D and R will be given by the operator

D(ε) = M∗DM (17)

R(ε) = M∗R(M∗)−1 (18)

where

M = 1 − ε2

24
D

1

ux

D2

M∗ = 1 +
ε2

24
D2 1

ux

D

M∗ being the adjoint operator of M. Then using (17), (18) and (16), we can yield, after a
simple calculation,

D(ε) = D + O(ε4)

R(ε) = D
1

ux

+
ε2

24
D

(
D

1

ux

D2 1

ux

− 1

ux

D2 1

ux

D +
(log ux)xxx

u2
x

)
+ O(ε4)

= D
1

ux

+
ε2

12
D

[
1

ux

(
1

ux

)
x

D2 +

(
1

ux

(
1

ux

)
x

)
x

D − 3u−5
x u3

xx

+ 2u−4
x uxxuxxx

]
+ O(ε4).

We hope that R(ε) is a recursion operator of the KdV equation (9). Indeed, it is the following
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Theorem 1. R(ε) satisfies the recursion operator equation of KdV equation

R(ε)t =
[
ux + uD +

ε2

12
D3, R(ε)

]
+ O(ε4). (19)

Proof. Direct calculations. �

We can think of (19) as the genus-one deformation of (7). One remarks that the recursion
operator

u +
ux

2
D−1 +

ε2

8
D2

of Magri pencil (13) will also satisfy the recursion operator equation (19) but there is no higher-
order correction. Moreover, we know that in general the recursion operator is non-local [10]
and hence the local property of R(ε) is special from this point of view.

Now from theorem 1, one will construct infinite rational symmetries (up to O(ε4)) of
KdV equation (9) using recursion operator R(ε) as follows:

uτn
= Rn(ε)1 + O(ε4) n = 1, 2, 3, . . . (20)

which is the genus-one deformation of (8). For example,

uτ1 = R(ε)1 =
[

1

ux

+
ε2

12

(−3u−5
x u3

xx + 2u−4
x uxxuxxx

)]
x

+ O(ε4)

uτ2 = R2(ε)1 =
{

1

ux

(
1

ux

)
x

+
ε2

12

[
30u−7

x u4
xx − 30u−6

x u2
xxuxxx

+ 3u−5
x u2

xxx + 3u−5
x uxxuxxxx

]}
x

+ O(ε4). (21)

Also, we note that one can also obtain (20) by (15) as follows. Since

uτn+1 = vτn+1 +
ε2

24

(
vτnx

vx

)
xx

+ O(ε4)

using (16), after some calculations, we can obtain

uτn+1 =
{

uτn

ux

+
ε2

24

[
(log ux)xxx

u2
x

uτn

]
+

ε2

24

[(
uτn

ux

)
xx

/
ux

]
x

− ε2

24

[(
uτnx

ux

)
xx

/
ux

]}
x

+ O(ε4)

= R(ε)uτn
+ O(ε4).

3. Bi-Hamiltonian structure of rational approximate symmetries

In this section, we will prove the bi-Hamiltonian structure of (20) for even flows, i.e.,
n = 2k, k � 1.

Firstly, the deformed Dorfman Hamiltonian operator J (ε) under the quasi-Miura
transformation (15) is

J (ε) = R2(ε)D(ε)

= D
1

ux

D
1

ux

D +
ε2

24
D

[
1

ux

D
(log ux)xxx

u2
x

+
(log ux)xxx

u2
x

D
1

ux

+ D
1

ux

D2 1

ux

D
1

ux

− 1

ux

D
1

ux

D2 1

ux

D

]
D + O(ε4). (22)

Then we have the following.
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Theorem 2. (i) J (ε) is a Hamiltonian operator up to O(ε4). (ii) J (ε) and D(ε) form a
bi-Hamiltonian pair up to O(ε4).

Proof. (i) The skew-symmetric property of operator (22) is obvious. To prove J (ε) is a
Hamiltonian operator, we must verify that J (ε) satisfies the Jacobi identities up to O(ε4).
Following [10, 11], we introduce the arbitrary basis of tangent vector �, which is then
conveniently manipulated according to the rules of exterior calculus. The Jacobi identities are
given by the compact expression

P(ε) ∧ δI = O(ε4)(mod. div.) (23)

where P(ε) = J (ε)�, I = 1
2�∧P(ε) and δ denotes the variational derivative. The vanishing

of the tri-vector (23) modulo a divergence is equivalent to the satisfaction of Jacobi identities.
Now, a lengthy and tedious calculation can yield

P(ε) =
{

1

ux

(
�x

ux

)
x

+
ε2

24

[
1

ux

(
(log ux)xxx

u2
x

�x

)
x

+
(log ux)xxx

u2
x

(
�x

ux

)
x

+

(
1

ux

(
1

ux

(
�x

ux

)
x

)
xx

)
x

− 1

ux

(
1

ux

(
�xx

ux

)
xx

)
x

]}
x

+ O(ε4)

and

I = 1

2
� ∧ P(ε) = − 1

2u2
x

�x ∧ �xx +
ε2

24

{−5u−6
x u3

xx�x ∧ �xx + 3u−5
x u2

xx�x ∧ �xxx

− 2u−4
x uxx�xx ∧ �xxx

}
+ O(ε4) (mod. div.).

Then

δI = (
3u−4

x uxx�x ∧ �xx − u−3
x �x ∧ �xxx

)
+

ε2

24

{
60u−7

x u3
xx�x ∧ �xx

− 30u−6
x uxxuxxx�x ∧ �xx − 30u−6

x u2
xx�x ∧ �xxx

+ 6u−5
x uxxx�x ∧ �xxx + 6u−5

x uxx�xx ∧ �xxx

+ 6u−5
x uxx�x ∧ �xxxx − 2u−4

x �xx ∧ �xxxx

}
x

+ O(ε4). (24)

Finally,

P(ε) ∧ δI = 0 − ε2

24

{−7u−8
x uxxuxxx�x ∧ �xx ∧ �xxxx + 7u−8

x u2
xx�x ∧ �xxx ∧ �xxxx

− 7u−7
x uxx�xx ∧ �xxx ∧ �xxxx +

(
7u−8

x uxxuxxxx

−u−7
x uxxxxx

)
�x ∧ �xx ∧ �xxx − u−7

x uxx�x ∧ �xxx ∧ �xxxxx

+ u−7
x uxxx�x ∧ �xx ∧ �xxxxx + u−6

x �xx ∧ �xxx ∧ �xxxxx

}
= (

u−6
x �xx ∧ �xxx ∧ �xxxx

)
x
− (

u−7
x uxx�x ∧ �xxx ∧ �xxxx

)
x

+
(
u−7

x uxxx�x ∧ �xx ∧ �xxxx

)
x
− (

u−7
x uxxxx�x ∧ �xx ∧ �xxx

)
x

+ O(ε4)

which is a total derivative so that the Jacobi identities are satisfied and this completes the proof
of (i).
(ii) Since J (ε) and D(ε) are Hamiltonian operators, we need only verify the additional
condition

P(ε) ∧ δID + D(�) ∧ δI = O(ε4)
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where

ID = 1
2� ∧ D(�) = 1

2� ∧ �x

δI and P(ε) are defined in (23), modulo a divergence.
Obviously, δID = O(ε4). So we will check D(�) ∧ δI = �x ∧ δI = O(ε4). From (24),

we have

�x ∧ δI = 0 +
ε2

24

{
6u−5

x uxxx�x ∧ �xx ∧ �xxx

− 30u−6
x u2

xx�x ∧ �xx ∧ �xxx + 6u−5
x uxx�x ∧ �xx ∧ �xxxx

}

= ε2

24

{
6u−5

x uxx�x ∧ �xx ∧ �xxx

}
x

+ O(ε4).

This completes the proof of (ii). �

Remark. Although the quasi-Miura transformation (15) is of a change of coordinates
(including derivatives), it is non-trivial to see that J (ε) is a Hamiltonian operator (up to
O(ε4)). It is because the change of coordinates, in general, will not preserve the Jacobi
identities.

Since J (ε) and D(ε) form a Hamiltonian pair, we will find the Hamiltonian densities of
the even flows of the rational approximate symmetries of the KdV equation (9) up to O(ε4)

uτ2n
= R2n(ε)1 = D(ε)

δH̃ n(ε)

δu
= J (ε)

δH̃ n−1(ε)

δu
n = 1, 2, 3, . . . (25)

in the following way. Firstly, we note that from (8) we have

vτ2n
= R2n1 = D(K2n+1) = J (K2n−1) (26)

where

K1 = x

K3 = 1

vx

(
1

vx

)
x

K5 = 1

vx

(
1

vx

(K3)x

)
x

...

K2n+1 = 1

vx

(
1

vx

(K2n−1)x

)
x

.

From the bi-Hamiltonian structure of J and D, one can construct the Hamiltonian densities
of (26) using the method described in [4]. Secondly, from the Hamiltonian structure of J (ε)

and D(ε), one can also construct the Hamiltonian densities of (25) using the quasi-Miura
transformation (15). For example,

vτ2 = R21 = D

(
1

vx

(
1

vx

)
x

)
= D

δĤ 1

δv
= J

δĤ 0

δv

vτ4 = R41 = D

(
1

vx

(
1

vx

(K3)x

)
x

)
= D

δĤ 2

δv
= J

δĤ 1

δv
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where

Ĥ 0 =
∫

xv dx

Ĥ 1 = 1

2

∫
1

vx

dx

Ĥ 2 = −1

2

∫
v2

xxv
−5
x dx.

Then after the quasi-Miura transformation (16), one can obtain

Ĥ 0(ε) =
∫

x

(
u − ε2

24
(log ux)xx

)
dx + O(ε4)

Ĥ 1(ε) = 1

2

∫ [
1

ux

+
ε2

24

(
2u−5

x u3
xx − 3u−4

x uxxuxxx + u−3
x uxxxx

)]
dx + O(ε4)

Ĥ 2(ε) = −1

2

∫ [
u2

xxu
−5
x +

ε2

24

(
22u−9

x u5
xx − 39u−8

x u3
xxuxxx

+ 13u−7
x u2

xxuxxxx − 2u−6
x uxxuxxxxx + 6u−7

x uxxu
2
xxx

)]
dx + O(ε4).

On the other hand, we can also verify using MAPLE that, noting (21),

uτ2 = R2(ε)1 = D(ε)
δĤ 1(ε)

δu
= J (ε)

δĤ 0(ε)

δu
+ O(ε4)

uτ4 = R4(ε)1 =
{

1

ux

(
1

ux

(
1

ux

)
x

)
x

+
ε2

12

[
1050u−9

x u3
xxuxxxx − 105u−8

x u3
xxx

+ 3780u−11
x u6

xx − 6300u−10
x u4

xxuxxx + 2310u−9
x u2

xxu
2
xxx

− 420u−8
x uxxuxxxuxxxx + 5u−7

x uxxuxxxxxx + 15u−7
x uxxxuxxxxx

+ 10u−7
x u2

xxxx − 105u−8
x u2

xxuxxxxx

]}
x

+ O(ε4)

= D(ε)
δĤ 2(ε)

δu
= J (ε)

δĤ 1(ε)

δu

which comes from the fact that the quasi-Miura transformation for g = 1 is canonical by
theorem 2.

One remarks that the truncated τ2n-flows are approximately integrable systems. We expect
that solutions to such approximately integrable equations exhibit integrable behaviour at least
for small physical parameters, for example, soliton solutions, as in [7]. But the truncated
τ2n-flows are very complicated and need further investigations.

4. Concluding remarks

We have studied the genus-one deformation of the Dorfman Hamiltonian operator using quasi-
Miura transformation borrowed from the free energy of the topological field theory. Then one
can prove that the deformed Hamiltonian operators J (ε) and D(ε) are still compatible and
thus it provides the rational approximate symmetries of the KdV equation up to O(ε4).
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In spite of the results obtained, there are some interesting issues that deserve further
investigation:

• We believe that theorems 1 and 2 can be generalized to higher genus, i.e., g � 2. However,
the computations will become quite unmanageable.

• The Schwarzian KdV equation (degenerate Krichever–Novikov (KN) equation [12] or
Ur–KdV equation [15]) is

vt = vxxx − 3
2v−1

x v2
xx = vx{v, x}

where {v, x} is the Schwarzian derivative. It is known that

1

vx

D
1

vx

and the Dorfman Hamiltonian operator J constitute a symplectic pair of the Schwarzian
KdV equation [4]. Thus, under the quasi-Miura transformation we can also investigate
the genus-one deformation of the Schwarzian KdV equation [2].

• One can generalize J to the polytropic gas system [11]. Using the universal loop
equation of free energy (p 157 in [5]), we can also find the corresponding quasi-
Miura transformations of two variables and study their deformations. Thus, the rational
approximate symmetries of polytropic gas systems will also be obtained. But the
computations are more involved and need further investigation.
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Appendix

The equation for F2 is

1

(v − λ)5

(
105

2048
v2

x − 945

16
v4

x

∂F2

∂vxxxx

)
+

1

(v − λ)4

( −49

1536
vxx +

735

8
v2

xvxx

∂F2

∂vxxxx

+
105

8
v3

x

∂F2

∂vxxx

)
+

1

(v − λ)3

[
vxxx

192vx

− 23v2
xx

4608v2
x

−
(

16v2
xx +

87

4
vxvxxx

)
∂F2

∂vxxxx

− 55

4
vxvxx

∂F2

∂vxxx

− 15

4
v2

x

∂F2

∂vxx

]
+

1

(v − λ)2

(
3vxxxx

∂F2

∂vxxxx

+
5

2
vxxx

∂F2

∂vxxx

+ 2vxx

∂F2

∂vxx

+
3

2
vx

∂F2

∂vx

)
− 1

(v − λ)

∂F2

∂v
= 0.

Let the coefficients of 1
(v−λ)i

, i = 1, 2, 3, 4, 5, be equal to zero. Then one can obtain

F2 = vxxxx

1152v2
x

− 7vxxvxxx

1920v3
x

+
v3

xx

360v4
x

.
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